Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra. | \(g_{-2}\) | \(h_{2}\) | \(g_{2}\) | \(-g_{3}+2g_{1}\) | \(g_{5}+2g_{4}\) | \(g_{7}\) | \(g_{6}\) | \(g_{8}\) | \(g_{9}\) |
weight | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi\) | \(0\) | \(4\psi\) | \(\omega_{1}-2\psi\) | \(\omega_{1}+2\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}-2\psi\) | \(3\omega_{1}+2\psi\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi} \) → (0, -4) | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{4\psi} \) → (0, 4) | \(\displaystyle V_{\omega_{1}-2\psi} \) → (1, -2) | \(\displaystyle V_{\omega_{1}+2\psi} \) → (1, 2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{3\omega_{1}-2\psi} \) → (3, -2) | \(\displaystyle V_{3\omega_{1}+2\psi} \) → (3, 2) | |||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | ||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | ||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi\) | \(0\) | \(4\psi\) | \(\omega_{1}-2\psi\) \(-\omega_{1}-2\psi\) | \(\omega_{1}+2\psi\) \(-\omega_{1}+2\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}-2\psi\) \(\omega_{1}-2\psi\) \(-\omega_{1}-2\psi\) \(-3\omega_{1}-2\psi\) | \(3\omega_{1}+2\psi\) \(\omega_{1}+2\psi\) \(-\omega_{1}+2\psi\) \(-3\omega_{1}+2\psi\) | ||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi}\) | \(\displaystyle M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\) | \(\displaystyle M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}-2\psi}\oplus M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\oplus M_{-3\omega_{1}-2\psi}\) | \(\displaystyle M_{3\omega_{1}+2\psi}\oplus M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\oplus M_{-3\omega_{1}+2\psi}\) | ||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi}\) | \(\displaystyle M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\) | \(\displaystyle M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{3\omega_{1}-2\psi}\oplus M_{\omega_{1}-2\psi}\oplus M_{-\omega_{1}-2\psi}\oplus M_{-3\omega_{1}-2\psi}\) | \(\displaystyle M_{3\omega_{1}+2\psi}\oplus M_{\omega_{1}+2\psi}\oplus M_{-\omega_{1}+2\psi}\oplus M_{-3\omega_{1}+2\psi}\) |